2,384 research outputs found

    A modest proposal regarding gene symbols

    Get PDF
    Proposal regarding gene symbol

    Neurospora genetic nomenclature

    Get PDF
    Neurospora genetic nomenclatur

    Resistivity network and structural model of the oxide cathode for CRT application

    Get PDF
    In this paper, the electrical properties of oxide cathode and oxide cathode plus, supplied by LG Philips Displays, have been investigated in relation to different cathode activation regimes and methods. Oxide cathode activation treatment for different durations has been investigated. The formations of the compounds associated to the diffusion of reducing elements (Mg, Al, and W) to the Ni cap surface of oxide cathode were studied by a new suggestion method. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) was used as analytical techniques. Al, W, and Mg doping elements take place during heating to 1080 K (Ni-Brightness) under a rich controlled Ba–SrO atmosphere through an acceleration life test. The chemical transport of these elements was occurred mainly by the Ni cap grain boundary mechanism with significant pile-up of Mg compounds. Al and W show a superficial concentrations and distribution. A new structural and resistivity network model of oxide cathode plus are suggested. The new structural model shows a number of metallic and metallic oxide pathways are exist at the interface or extended through the oxide coating. The effective values of the resistances and the type of the equivalent circuit in the resistivity network model are temperature and activation time dependent.</p

    Dientamoeba fragilis, the neglected trichomonad of the human bowel

    Full text link
    © 2016, American Society for Microbiology. All Rights Reserved. Dientamoeba fragilis is a protozoan parasite of the human bowel, commonly reported throughout the world in association with gastrointestinal symptoms. Despite its initial discovery over 100 years ago, arguably, we know less about this peculiar organism than any other pathogenic or potentially pathogenic protozoan that infects humans. The details of its life cycle and mode of transmission are not completely known, and its potential as a human pathogen is debated within the scientific community. Recently, several major advances have been made with respect to this organism’s life cycle and molecular biology. While many questions remain unanswered, these and other recent advances have given rise to some intriguing new leads, which will pave the way for future research. This review encompasses a large body of knowledge generated on various aspects of D. fragilis over the last century, together with an update on the most recent developments. This includes an update on the latest diagnostic techniques and treatments, the clinical aspects of dientamoebiasis, the development of an animal model, the description of a D. fragilis cyst stage, and the sequencing of the first D. fragilis transcriptome

    The ambiguous life of Dientamoeba fragilis: the need to investigate current hypotheses on transmission.

    Full text link
    Dientamoeba fragilis is an inhabitant of the human bowel and is associated with gastrointestinal illness. Despite its discovery over a century ago, the details of Dientamoeba's life cycle are unclear and its mode of transmission is unknown. Several theories exist which attempt to explain how Dientamoeba may be transmitted. One theory suggests that animals are responsible for the transmission of Dientamoeba. However, reports of Dientamoeba in animals are sporadic and most are not supported by molecular evidence. Another theory suggests that Dientamoeba may be transmitted via the ova of a helminth. Given that the closest relative of Dientamoeba is transmitted via the ova of a helminth, this theory seems plausible. It has also been suggested that Dientamoeba could be transmitted directly between humans. This theory also seems plausible given that other relatives of Dientamoeba are transmitted in this way. Despite numerous investigations, Dientamoeba's mode of transmission remains unknown. This review discusses the strengths and weaknesses of theories relating to Dientamoeba's mode of transmission and, by doing so, indicates where gaps in current knowledge exist. Where information is lacking, suggestions are made as to how future research could improve our knowledge on the life cycle of Dientamoeba

    Evaluation of the in vitro Antiprotozoal Activity of Various Dry Plant Extracts against Dientamoeba fragilis

    Full text link
    Plants represent an important source of diverse biomolecules with unique properties, some of which make them attractive candidates for the development of novel antimicrobials. Plant extracts have been evaluated in vitro for their activity against human-infecting gastrointestinal protozoa, such as Giardia intestinalis [1] and Entamoeba histolytica [2], with some success. Some plant extracts are also active against the sexually transmitted parasite Trichomonas vaginalis [2]

    Delivery of cardiopulmonary resuscitation in the microgravity environment

    Get PDF
    The microgravity environment presents several challenges for delivering effective cardiopulmonary resuscitation (CPR). Chest compressions must be driven by muscular force rather than by the weight of the rescuer's upper torso. Airway stabilization is influenced by the neutral body posture. Rescuers will consist of crew members of varying sizes and degrees of physical deconditioning from space flight. Several methods of CPR designed to accommodate these factors were tested in the one G environment, in parabolic flight, and on a recent shuttle flight. Methods: Utilizing study participants of varying sizes, different techniques of CPR delivery were evaluated using a recording CPR manikin to assess adequacy of compressive force and frequency. Under conditions of parabolic flight, methods tested included conventional positioning of rescuer and victim, free floating 'Heimlich type' compressions, straddling the patient with active and passive restraints, and utilizing a mechanical cardiac compression assist device (CCAD). Multiple restrain systems and ventilation methods were also assessed. Results: Delivery of effective CPR was possible in all configurations tested. Reliance on muscular force alone was quickly fatiguing to the rescuer. Effectiveness of CPR was dependent on technique, adequate restraint of the rescuer and patient, and rescuer size and preference. Free floating CPR was adequate but rapidly fatiguing. The CCAD was able to provide adequate compressive force but positioning was problematic. Conclusions: Delivery of effective CPR in microgravity will be dependent on adequate resuer and patient restraint, technique, and rescuer size and preference. Free floating CPR may be employed as a stop gap method until patient restraint is available. Development of an adequate CCAD would be desirable to compensate for the effects of deconditioning

    The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae

    Full text link
    © 2019 Elsevier B.V. The mitochondrial DNA (mtDNA) is a potentially valuable phylogenetic marker given its presence across all eukaryotic taxa and its relative conservation in structure and sequence. In trypanosomatids, a homologue of the mtDNA referred to as the maxicircle DNA, is located within a specialised structure in the single mitochondrion of the trypanosomatids called the kinetoplast; a high molecular weight network of DNA composed of thousands of catenated minicircles and a smaller number of larger maxicircles. Unique to the kinetoplastid protists, the maxicircle component of this complex network could represent a desirable target for taxonomic inquiry that may also facilitate exploration of the evolutionary history of this important group of parasites. The aim of this study was to investigate the phylogenetic value of the trypanosomatid maxicircle for these applications. Maxicircle sequences were obtained either by assembling raw sequence data publicly accessible in online databases (i.e., NCBI), or by amplification of novel maxicircle sequences from trypanosomatid DNA using long-range (LR) PCR with subsequent Illumina sequencing. This procedure facilitated the generation of nearly complete maxicircle sequences (i.e., excluding the divergent region) for numerous dixenous and monoxenous trypanosomatid species. Annotation of each maxicircle sequence confirmed that their structure was conserved across all taxa examined. Phylogenetic analyses confirmed that Z. australiensis showed a greater genetic relatedness with the dixenous trypanosomatids of the genera Leishmania and Endotrypanum, as opposed to members of the monoxenous genera Crithidia and Leptomonas. Additionally, molecular clock analysis supported that the dixenous Leishmaniinae appeared approximately 75 million years ago during the breakup of Gondwana. In line with previous studies, our results support the Supercontinents hypothesis regarding the origin of dixenous Leishmaniinae. Ultimately, we demonstrate that the maxicircle represents an excellent phylogenetic marker for studying the evolutionary history of trypanosomatids, resulting in trees with very high bootstrap support values

    A case-controlled study of Dientamoeba fragilis infections in children

    Full text link
    Dientamoeba fragilis is a pathogenic protozoan parasite that is implicated as a cause of human diarrhoea. A case-controlled study was conducted to determine the clinical signs associated with D. fragilis infection in children presenting to a Sydney Hospital. Treatment options are also discussed. Stool specimens were collected from children aged 15 years or younger and analysed for the presence of D. fragilis. In total, 41 children were included in the study along with a control group. Laboratory diagnosis was performed by microscopy of permanently stained, fixed faecal smears and by real-time PCR. Gastrointestinal symptoms were present in 40/41 (98%) of these children with dientamoebiasis, with diarrhoea (71%) and abdominal pain (29%) the most common clinical signs. Chronic gastrointestinal symptoms were present in 2% of cases. The most common anti-microbial used for treatment was metronidazole (n=41), with complete resolution of symptoms and clearance of parasite occurring in 85% of cases. A treatment failure rate occurred in 15% of those treated with metronidazole. Follow-up treatment comprised of an additional course of metronidazole or iodoquinol was needed in order to achieve complete resolution of infection and symptoms in this group. This study demonstrates the pathogenic potential of D. fragilis in children and as such it is recommended that all laboratories must routinely test for this organism and treat if detected. © Cambridge University Press 2011

    Activity of benzimidazoles against Dientamoeba fragilis (Trichomonadida, Monocercomonadidae) in vitro and correlation of beta-tubulin sequences as an indicator of resistance

    Full text link
    Recently, Dientamoeba fragilis has emerged as a significant and common enteropathogen. The majority of patients with dientamoebiasis present with gastrointestinal complaints and chronic symptoms are common. Numerous studies have successfully demonstrated parasite clearance, coupled with complete resolution of clinical symptoms following treatment with various antiparasitic compounds. Despite this, there is very little in vitro susceptibility data available for the organism. Benzimidazoles are a class of antiparasitic drugs that are commonly used for the treatment of protozoan and helminthic infections. Susceptibility testing was undertaken on four D. fragilis clinical isolates against the following benzimidazoles: albendazole, flubendazole, mebendazole, nocodazole, triclabendazole and thiabendazole. The activities of the antiprotozoal compounds at concentrations ranging from 2 μg/mL to 500 μg/mL were determined via cell counts of D. fragilis grown in xenic culture. All tested drugs showed no efficacy. The beta-tubulin transcript was sequenced from two of the D. fragilis isolates and amino acid sequences predicted a susceptibility to benzimidazoles. This is the first study to report susceptibility profiles for benzimidazoles against D. fragilis, all of which were not active against the organism. This study also found that beta-tubulin sequences cannot be used as a reliable marker for resistance of benzimidazoles in D. fragilis. © D. Stark et al., published by EDP Sciences, 2014
    • …
    corecore